Flood Risk Implications for the Proposed New Severn Barrage

by

Roger A. Falconer¹ and Reza Ahmadian² ¹CH2M HILL - Halcrow Professor of Water Management ²Post-Doctorate Research Associate

Hydro-environmental Research Centre School of Engineering, Cardiff University

Research Funding

LCRI LOW CARBON RESEARCH INSTITUTE

Ewrop & Chymru: Buddsoddi yn eich dyfodol Cronfa Datblygu Rhanbarthol Ewrop

Europe & Wales: Investing in your future European Regional Development Fund

INVESTING IN OUR COMMON FUTURE

General Challenges

- Growing world-wide increase in demand for energy - particularly in India and China
- Tidal energy generation has advantage over wind and waves - tides are predictable
- UK target of 15% of energy from renewables by 2020 ➤ about 35% of electrical energy
- Wales' 2025 target for wave and tidal renewable energy is 4 GW - Barrage would meet this target
- Severn Estuary basin is ideal for tidal energy

Potential Power from Tides

For tidal barrages and impoundments:-

Power \propto **A H**²

A = wetted surface area upstream of a barrage H = water level difference across a barrage/lagoon

Why the Severn Barrage?

Cardiff-Weston line: $A = 500 \text{ km}^2 \approx 1.5 \text{ x}$ Lake Garda $H \approx 7 \text{m}$ for STPG scheme - with ebb generation only $H \approx 3 \text{m}$ for VLH turbines - but generate on ebb & flood

Severn Tidal Power Group Scheme

2nd highest spring tidal range ≈ 14 m
Cardiff to Weston
Length about 16 km
Generate ≈ 5% of U.K. electricity

Some key facts:

- Total cost \approx £20 bn
- Save > 6.8 million tonnes carbon pa

STPG (1989) Severn Barrage Layout

Key facts:

- 216 turbines
 each 40 MW
 ≈ 17 TWh/yr
- 166 sluices
- Ship locks
- Fish pass?
- Public road & railway

STPG Operation - Ebb Generation

CARDIFF

PRIFYSGOL

CAERDY P

HRC Hydro-environmenta Research Centre

STPG Scheme: One Way Generation

CARDI

UNIVERS

Existing Estuarine Environment

• Tide Range - 14 m on springs, 7 m on neaps

- High tidal currents and large inter-tidal areas
- 30 Mt sediment suspended on springs, 4 Mt neaps
- Little sunlight penetration through water column
- Reduced saturation dissolved oxygen levels
- Ecology
 - Harsh estuarine regime with high currents
 - Limited aquatic life in water column / bed
 - Bird numbers per km² are relatively small

Severn Barrage - Grid Configuration

Velocity Field Around STPG Barrage

Main Effects of STPG Barrage

- Spring tide range reduced from 14 m to 7 m
 - Significant loss of upstream inter-tidal habitats
 - Reduced currents up & downstream of barrage
 - Reduced turbidity / suspended sediment levels
 - Increased light penetration through water column with increased water clarity
 - Increased primary productivity and changed biodiversity of benthic fauna and flora
- Upstream tidal range of 7m still relatively large compared to most deltas world-wide

Tidal Reef - Low Head Scheme

Severn Embryonic Technologies Scheme

Alternative: Two Way Generation

HRC

Research Centre

10

CARD

UNIVE

CAERDY

Hafren Power Severn Barrage Scheme Some key facts:

- 1026 VLH turbines each 9m, 6.3MW
 ≈ 16.4TWh/yr
- No sluice gates
 - Length about 18km
 - Total cost \approx £25bn
- Ship locks
- Save > 7.2 million tonnes carbon pa
- Road/rail, fish pass?

Three Modes of Operation Studied

Model predictions resulted in peak power output for:-

- Starting Head = 4.0 m
- Minimum Head = 2.0 m

Water levels and Power Output

Ebb Only 48.8 GWh/24.8h 5.2 m mean tide High tide 4.6 m

Two-Way

48.4 GWh/24.8h
 4.4 m mean tide
 High tide 3.2 m

Irish Sea & Continental Shelf Model

PRIFYSGO CAERDYD

0

Impacts of Different BC on Far Field

Peak water level differences – Without and With Barrage

STPG Scheme - Ebb Generation 216 Turbines - 166 Sluices

HRC Hydro-environmenta Research Centre

Two-Way Generation 764 Turbines - No Sluices

Peak Water Levels - Ebb Only 216 Turbines - 166 Sluices

Peak Water Levels - Two Way 764 Bulb Turbines - No Sluices

Frome

Peak Tidal Currents - Ebb Only 216 Turbines - 166 Sluices

Peak Tidal Currents - Two Way 764 Bulb Turbines - No Sluices

Peak Water Levels - (2005) 1026 VLH Turbines - No Sluices

Peak Water Levels - (2145) 1026 VLH Turbines - No Sluices

Peak Water Levels - (2145) 1026 VLH Turbines - No Sluices

Peak Water Levels - (2145 + Surge) 1026 VLH Turbines - No Sluices

High Suspended Sediment Levels

10

PRIFYSGOL CA^ERDΥ_Ι₽

Suspended Sediment Levels - STPG

Without Barrage

With Barrage

Mean Flood - Spring Tide

Suspended Sediment Levels – HP

Without Barrage

Mean Ebb - Spring Tide

Summarising for Two-Way Scheme

- Severn Barrage with Low Head Turbines would:
 - Provide 5% of UK's electricity from renewables
 - Reduce intertidal habitats by $\approx 50 \text{km}^2 (140 \text{km}^2 \text{ STPG})$
 - Reduce flood risk upstream and combat sea level rise
 - Reduce (to varying degree) tidal currents & suspended sediments, but increase light penetration & water clarity
 - Change ecology and benthic flora and fauna
 - Enhance opportunities for tourism and recreation
 - Two-way generation offers potential for optimal energy provision and minimal hydrodynamic change
 - Fish challenges partially reduced due to lower velocities

Thank You

Professor Roger A. Falconer Email: FalconerRA@cf.ac.uk

