

Running gene sequences in parallel using

I-TASSER

Introduction

I-TASSER (Iterative Threading ASSEmbly Refinement) is an advanced computer algorithm

for protein structure and function predictions, produced by Zhang Labs at the University of

Michigan [1]. It consists of a number of binary executables that are run in order by a Perl

script. Users provide the gene sequence they wish to run in an input file called seq.fasta, an

example of which is:

>3mabA

LANLSELPNIGKVLEQDLIKAGIKTPVELKDVGSKEAFLRIWENDSSVCMSELYALEGAVQGIRWHGLDEAKKIELKKFHQSLEG

Note that the sequence is labelled (“3mabA” in this case) by the comment on the line starting

with “>” before the gene sequence itself is specified on subsequent lines.

Running an individual sequence in parallel

At various stages in an I-TASSER calculation there are a number of independent subtasks

that can be executed in parallel. The Perl script provided with I-TASSER included

commands for the PBS batch queue system to submit separate batch jobs for each

independent task. The Perl script in the original batch job must continue running, using the

facilities of the PBS batch queue system to monitor the progress of the other tasks, so that it

can determine when it is appropriate to continue to the next stage in the overall calculation.

This model has two disadvantages for the user:

1. Each batch job submitted by the user submits a number of other batch scripts. While

the number is not very large (~8 other jobs), it makes it more difficult to track

progress of the jobs and to interrupt or cancel the job during execution if required.

2. If the system is busy, the generated batch jobs for the independent subtasks may not

start, or may not start sufficiently early to complete, before the original batch job

exceeds its runtime limit. Thus the job will be left in a partially completed state (Note:

I-TASSER is reasonably robust at re-starting work on a given gene sequence which

mitigates this problem to some extent).

For installation at HPC Wales, the I-TASSER script had to be adapted for use with the LSF

batch queue system rather than PBS. Improvements to the methodology of running the

independent subtasks were made at the same time, taking advantage of the blaunch

command within LSF to allow the subtasks to be dispatched to run on different cores within

the system, all handled within a single batch job. The user's batch job reserves a number of

jobs slots (usually this means the same number of cores) on one or more nodes of the

Page 2 of 3 Ref: HPCW-TN-15-002

system. When running, the modified I-TASSER script determines the list of nodes available

to the job from the environment variable LSB_HOSTS. Where previously separate batch

scripts were generated for subtasks and submitted via a PBS qsub (or LSF bsub)

command, blaunch is used instead to run each subtask on one of the cores of the nodes

reserved by the batch script. Subtasks are distributed in a round-robin fashion across all of

the nodes to aid load balancing. It is still necessary for the I-TASSER perl script to track

what subtasks are running at each of the two parallel stages, to determine when the script

can move on to the next stage. Previously this was done using PBS qstat, now the lsgrun

command is used to run ps on all the nodes reserved by the batch script to monitor the

execution of the subtasks.

Running multiple sequence in parallel

Key users of I-TASSER on HPC Wales wanted to be able to efficiently run multiple gene

sequences, however I-TASSER can only run a single sequence in each input file. A new Perl

script was written to process a single fasta file containing all of the required sequences,

generate separate seq.fasta files for each sequence in subdirectories named using the

sequence labels, and then to run in parallel the normal I-TASSER script for each sequence.

For example, if the user's input file contained:

>sequence1

ACTCCCCGTGCGCGCCCGGCCCGTAGCGTCCTCGTCGCCGCCCCTCGTCTCGCAGCCGCAGCCCGCGTGG

ACGCTCTCGCCTGAGCGCCGCGGACTAGCCCGGGTGGCC

>sequence2

CAGTCCGGCAGCGCCGGGGTTAAGCGGCCCAAGTAAACGTAGCGCAGCGATCGGCGCCGGAGATTCGCGA

ACCCGACACTCCGCGCCGCCCGCCGGCCAGGACCCGCGGCGCGATCGCGGCGCCGCGCTACAGCCAGCCT

CACTGGCGCGCGGGCGAGCGCACGGGCGCTC

>sequence3

CACGACAGGCCCGCTGAGGCTTGTGCCAGACCTTGGAAACCTCAGGTATATACCTTTCCAGACGCGGGAT

CTCCCCTCCCC

>sequence4

CAGCAGACATCTGAATGAAGAAGAGGGTGCCAGCGGGTATGAGGAGTGCATTATCGTTAATGGGAACTTC

AGTGACCAGTCCTCAGACACGAAGGATGCTCCCTCACCCCCAGTCTTGGAGGCAATCTGCACAGAGCCAG

TCTGCACACC

then the four subdirectories created would be called sequence1, sequence2, sequence3 and

sequence4. No aggregation or post processing of the results for all the sequences is

performed. Each sequences is run independently and the user is required to do any

collective analysis of the results required as a separate task.

The same principles for running the sequences in parallel apply as described above:

blaunch and lsgrun are used to dispatch and monitor individual I-TASSER scripts for each

sequence, all within a single batch job. The number of sequences running at any one time

should not exceed the number of job slots reserved in the batch script, and the user can

specify to under-populate each node, i.e. to use fewer jobs slots per node than there are

Page 3 of 3 Ref: HPCW-TN-15-002

processor cores per node if the processing of each sequence is likely to require large

amounts of memory.

The time taken to do the computation for each sequence can vary significantly from

sequence to sequence. Two features aid load balancing

1. Sequences are distributed in a round-robin fashion across all the nodes allocated to

the job.

2. Where the total number of sequences is larger than the number of job slots, new

sequences are started dynamically as each sequence completes.

Running many sequences within a single batch script makes it more likely that one or more

sequences will not complete before the time limit for that batch job is reached. However, the

restart functionality within I-TASSER can be used to continue computation on sequences

that have not completed (without redoing work that has finished successfully) simply by

resubmitting the batch job again if required.

References

[1] http://zhanglab.ccmb.med.umich.edu/I-TASSER/

[2] Similar facilities may exist within PBS and other batch queue software; however this was

not investigated as part of this work.

http://zhanglab.ccmb.med.umich.edu/I-TASSER/

