

Guide to running

VASP

What is VASP

The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic scale

materials modelling, e.g. electronic structure calculations and quantum-mechanical

molecular dynamics, from first principles.

VASP computes an approximate solution to the many-body Schrödinger equation, either

within density functional theory (DFT), solving the Kohn-Sham equations, or within the

Hartree-Fock (HF) approximation, solving the Roothaan equations. Hybrid functionals that

mix the Hartree-Fock approach with density functional theory are implemented as well.

Furthermore, Green's functions methods (GW quasiparticles, and ACFDT-RPA) and many-

body perturbation theory (2nd-order Møller-Plesset) are available in VASP.

In VASP, central quantities like the one-electron orbitals, the electronic charge density, and

the local potential are expressed in plane wave basis sets. The interactions between the

electrons and ions are described using norm-conserving or ultrasoft pseudopotentials, or the

projector-augmented-wave method.

Please note that only the parallel version of VASP is installed on HPC Wales, with the

parallel executable named vasp. HPC Wales can make this application available to selected

users, as a VASP licence is required. Please contact the HPCWales helpdesk to request

access.

Step 1 - Log in

The example used in this guide is configured to run on the Swansea Sandy Bridge cluster.

Connect to login.hpcwales.co.uk with your HPC Wales user credentials using your preferred

method (e.g. PuTTY from a Windows machine or ssh from any Linux terminal), then

ssh sw-sb-log-001 to connect to the Swansea system.

The steps below involve typing commands (in bold font) in the terminal window.

Step 2 - Load a VASP module

 A number of VASP packages are available.

• List pre-installed VASP versions:

module avail vasp

 To load the latest version:

module purge

module load vasp/5.3.3

Note that successful execution of the associated executable relies on access to the MPI

library specified by the module (Version 4.0 Update 3).

Page 2 of 3 Ref: HPCW-AG-15-033

• Confirm the loaded modules. All dependencies are handled automatically via the

module file:

module list

Step 3 - Create a directory

From your home directory, create a directory to hold the VASP data:

cd ~

mkdir VASP

Step 4 - Obtain a test case

Three benchmark test cases are provided with the installation at

/app/chemistry/vasp/5.3.3/sb-example

Copy the simplest of these contained in the tar file VaspHg.tar.gz to your user space:

cd ~/VASP

cp /app/chemistry/vasp/5.3.3/sb-example/VaspHg.tar.gz .

tar xvzf VaspHg.tar.gz

cd VaspHg

Note the full stop at the end of the cp line as this is important!

Step 5 - Submit a job

You are now ready to run this test case with the supplied SLURM job script.

The current directory should contain all required files to run a VASP job: INCAR is the

central input file that determines ‘what to do and how', POTCAR contains the

pseudopotential for each atomic species used in the calculation, POSCAR contains the

lattice geometry and the ionic positions, and optionally also starting velocities and predictor-

corrector coordinates for a MD-run, KPOINTS contains the k-point coordinates and weights

of the mesh-size for creating the k-point grid. The directory also contains a sample output file

and a batch script.

• Submit the job using: sbatch VaspHg.SLURM.q

• Check the job queue using: squeue

• When completed, the new output can be found in

 VASP.Hg.OUTCAR.NCPUS=32.PPN=16.<Job_ID>.

where <Job_ID> is the ID generated by the system.

• The output should be compared with the reference output file OUTCAR.ref to check that

all is working correctly.

Page 3 of 3 Ref: HPCW-AG-15-033

Step 6 – Scaling tests

Now you have checked the code is working look at the scaling of the code. To achieve this

run the job a number of times on differing core counts and calculate the speed up of the job

relative to running on 16 cores. Remember if t(P) is the time on P cores the speed up S is

given by S=t(16)/t(P). To do this

• Look at the batch script VaspHg.SLURM.q and you will see a line similar to

#SBATCH --ntasks=32

• Using your favourite editor change the number at the end of this line to adjust the

number of cores

• Re-run the job

• The elapsed time for the job can be found near the end of the OUTCAR file after the

text string ‘Elapsed time (sec)’.

Run the job on 8, 16, 24 and 32 cores and plot the speed up. What would you conclude

about the scaling of the job?

Note: For larger number of cores it is important to find an appropriate value for the NPAR

switch, which sets the parallelization over bands.

References

 Official VASP website: https://www.vasp.at/

 VASP User Documentation can be found at

https://www.vasp.at/index.php/documentation

with an on-line user manual at http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html and a

PDF copy at:

http://cms.mpi.univie.ac.at/vasp/vasp.pdf.

The lecture notes and examples from a VASP hands on workshop (see

https://www.vasp.at/index.php/documentation) are highly recommended as place to start if

you are a beginner and might also be useful if you are not.

https://www.vasp.at/
https://www.vasp.at/index.php/documentation
http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html
http://cms.mpi.univie.ac.at/vasp/vasp.pdf
https://www.vasp.at/index.php/documentation

